Struct std::collections::btree_set::BTreeSet
[−]
[src]
pub struct BTreeSet<T> { map: BTreeMap<T, ()>, }
A set based on a B-Tree.
See BTreeMap
's documentation for a detailed discussion of this collection's performance
benefits and drawbacks.
It is a logic error for an item to be modified in such a way that the item's ordering relative
to any other item, as determined by the Ord
trait, changes while it is in the set. This is
normally only possible through Cell
, RefCell
, global state, I/O, or unsafe code.
Fields
map |
Methods
impl<T> BTreeSet<T> where T: Ord
fn new() -> BTreeSet<T>
Makes a new BTreeSet with a reasonable choice of B.
Examples
use std::collections::BTreeSet; let mut set: BTreeSet<i32> = BTreeSet::new();
impl<T> BTreeSet<T>
fn iter(&self) -> Iter<T>
Gets an iterator over the BTreeSet's contents.
Examples
use std::collections::BTreeSet; let set: BTreeSet<usize> = [1, 2, 3, 4].iter().cloned().collect(); for x in set.iter() { println!("{}", x); } let v: Vec<_> = set.iter().cloned().collect(); assert_eq!(v, [1, 2, 3, 4]);
impl<T> BTreeSet<T> where T: Ord
fn range<Min, Max>(&'a self, min: Bound<&Min>, max: Bound<&Max>) -> Range<'a, T> where Min: Ord + ?Sized, T: Borrow<Min> + Borrow<Max>, Max: Ord + ?Sized
btree_range
): matches collection reform specification, waiting for dust to settle
Constructs a double-ended iterator over a sub-range of elements in the set, starting
at min, and ending at max. If min is Unbounded
, then it will be treated as "negative
infinity", and if max is Unbounded
, then it will be treated as "positive infinity".
Thus range(Unbounded, Unbounded) will yield the whole collection.
Examples
#![feature(btree_range, collections_bound)] use std::collections::BTreeSet; use std::collections::Bound::{Included, Unbounded}; let mut set = BTreeSet::new(); set.insert(3); set.insert(5); set.insert(8); for &elem in set.range(Included(&4), Included(&8)) { println!("{}", elem); } assert_eq!(Some(&5), set.range(Included(&4), Unbounded).next());
impl<T> BTreeSet<T> where T: Ord
fn difference(&'a self, other: &'a BTreeSet<T>) -> Difference<'a, T>
Visits the values representing the difference, in ascending order.
Examples
use std::collections::BTreeSet; let mut a = BTreeSet::new(); a.insert(1); a.insert(2); let mut b = BTreeSet::new(); b.insert(2); b.insert(3); let diff: Vec<_> = a.difference(&b).cloned().collect(); assert_eq!(diff, [1]);
fn symmetric_difference(&'a self, other: &'a BTreeSet<T>) -> SymmetricDifference<'a, T>
Visits the values representing the symmetric difference, in ascending order.
Examples
use std::collections::BTreeSet; let mut a = BTreeSet::new(); a.insert(1); a.insert(2); let mut b = BTreeSet::new(); b.insert(2); b.insert(3); let sym_diff: Vec<_> = a.symmetric_difference(&b).cloned().collect(); assert_eq!(sym_diff, [1, 3]);
fn intersection(&'a self, other: &'a BTreeSet<T>) -> Intersection<'a, T>
Visits the values representing the intersection, in ascending order.
Examples
use std::collections::BTreeSet; let mut a = BTreeSet::new(); a.insert(1); a.insert(2); let mut b = BTreeSet::new(); b.insert(2); b.insert(3); let intersection: Vec<_> = a.intersection(&b).cloned().collect(); assert_eq!(intersection, [2]);
fn union(&'a self, other: &'a BTreeSet<T>) -> Union<'a, T>
Visits the values representing the union, in ascending order.
Examples
use std::collections::BTreeSet; let mut a = BTreeSet::new(); a.insert(1); let mut b = BTreeSet::new(); b.insert(2); let union: Vec<_> = a.union(&b).cloned().collect(); assert_eq!(union, [1, 2]);
fn len(&self) -> usize
Returns the number of elements in the set.
Examples
use std::collections::BTreeSet; let mut v = BTreeSet::new(); assert_eq!(v.len(), 0); v.insert(1); assert_eq!(v.len(), 1);
fn is_empty(&self) -> bool
Returns true if the set contains no elements.
Examples
use std::collections::BTreeSet; let mut v = BTreeSet::new(); assert!(v.is_empty()); v.insert(1); assert!(!v.is_empty());
fn clear(&mut self)
Clears the set, removing all values.
Examples
use std::collections::BTreeSet; let mut v = BTreeSet::new(); v.insert(1); v.clear(); assert!(v.is_empty());
fn contains<Q>(&self, value: &Q) -> bool where T: Borrow<Q>, Q: Ord + ?Sized
Returns true
if the set contains a value.
The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.
Examples
use std::collections::BTreeSet; let set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); assert_eq!(set.contains(&1), true); assert_eq!(set.contains(&4), false);
fn get<Q>(&self, value: &Q) -> Option<&T> where T: Borrow<Q>, Q: Ord + ?Sized
set_recovery
)Returns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.
fn is_disjoint(&self, other: &BTreeSet<T>) -> bool
Returns true
if the set has no elements in common with other
.
This is equivalent to checking for an empty intersection.
Examples
use std::collections::BTreeSet; let a: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); let mut b = BTreeSet::new(); assert_eq!(a.is_disjoint(&b), true); b.insert(4); assert_eq!(a.is_disjoint(&b), true); b.insert(1); assert_eq!(a.is_disjoint(&b), false);
fn is_subset(&self, other: &BTreeSet<T>) -> bool
Returns true
if the set is a subset of another.
Examples
use std::collections::BTreeSet; let sup: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); let mut set = BTreeSet::new(); assert_eq!(set.is_subset(&sup), true); set.insert(2); assert_eq!(set.is_subset(&sup), true); set.insert(4); assert_eq!(set.is_subset(&sup), false);
fn is_superset(&self, other: &BTreeSet<T>) -> bool
Returns true
if the set is a superset of another.
Examples
use std::collections::BTreeSet; let sub: BTreeSet<_> = [1, 2].iter().cloned().collect(); let mut set = BTreeSet::new(); assert_eq!(set.is_superset(&sub), false); set.insert(0); set.insert(1); assert_eq!(set.is_superset(&sub), false); set.insert(2); assert_eq!(set.is_superset(&sub), true);
fn insert(&mut self, value: T) -> bool
Adds a value to the set.
If the set did not have a value present, true
is returned.
If the set did have this key present, false
is returned, and the
entry is not updated. See the module-level documentation for more.
Examples
use std::collections::BTreeSet; let mut set = BTreeSet::new(); assert_eq!(set.insert(2), true); assert_eq!(set.insert(2), false); assert_eq!(set.len(), 1);
fn replace(&mut self, value: T) -> Option<T>
set_recovery
)Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.
fn remove<Q>(&mut self, value: &Q) -> bool where T: Borrow<Q>, Q: Ord + ?Sized
Removes a value from the set. Returns true
if the value was
present in the set.
The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.
Examples
use std::collections::BTreeSet; let mut set = BTreeSet::new(); set.insert(2); assert_eq!(set.remove(&2), true); assert_eq!(set.remove(&2), false);
fn take<Q>(&mut self, value: &Q) -> Option<T> where Q: Ord + ?Sized, T: Borrow<Q>
set_recovery
)Removes and returns the value in the set, if any, that is equal to the given one.
The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.